北海道大学 農学院 H31改革の概要

学院の概要

- 人類の生存基盤と最先端の農林技術 に関する学際的かつ統合的な文理融 合型の教育・研究を実施
- →最先端の基礎研究から生まれるシー ズを広大な北大研究フィールド(国 土の1/570) で応用・実証
- 広く社会に適応できる素養を培い つつ高い専門性を養成
 - 食料・資源・エネルギー・環境に 関する地球規模の問題解決に貢献 できる知識と技術を有する人材
 - 地域の農林業及びその関連産業の 持続的発展に貢献できる知識と技 術を有する人材
- 卒業生は,種苗,林業,農協,食品, 製薬,農機,大学,官公庁,小・ 中・高校, マスメディア, 金融, 保 険など,幅広く活躍

平成30年度までの専攻の概要

専門性を高めるとともに、食糧、資源、それらを取り 巻く環境を包含した人類の生存基盤を包括的に理解で き、その持続的発展に貢献できる人材を養成

共生基盤学専攻

「食の安全と安心」への関心の高まり、化石燃料消費にともな う環境破壊を踏まえ,研究者としてのみならず高度専門職業人 として地域における新産業の創出に貢献できる人材を養成

牛物資源科学専攻

作物および動植物資源の機能開発と利用を図り、それら資源の 持続的な再生産を可能にする生産技術の確立を目指した教育・ 研究を通して農業に貢献する人材を養成

応用牛物科学専攻

生物機能,生物資源の科学的解明と活用に関する体系を理解し, 環境負荷の低減、化石燃料依存型産業からの脱却、食料資源の 安全安定供給、健康増進等を推進できる人材を養成

環境資源学専攻

生物資源の多様性解明,管理,保全,修復,災害軽減などを考 慮しつつ、環境と調和した食料生産と物質循環システムの構築 を図る研究を通し、持続可能な発展に貢献する人材を養成

H31改革

専攻間の垣根を無くし, 領域を跨いだ教育・研 究指導を可能とする1専攻3コース体制とするこ とにより, 俯瞰力と専門性を持った人材を養成

生産フロンティアコース

作物等の植物資源の機能開発と利用を図り、それら資 源の持続的な再生産を可能にする技術と, 有効な社会 制度や流通利用システムの確立を図る教育・研究を通 して, 人類の生存に不可欠な食料等の生産に貢献する 人材を養成

生命フロンティアコース

生物の機能・特性の科学的解明と高度な活用を図り, 食料(生物)資源の安全・安定供給,生物変換による 高付加価値化,健康増進等を図る教育・研究を通して, 食と健康の維持増進に貢献できる人材を養成

環境フロンティアコース

地域の農業・森林資源の特性解明,管理,保全と多面 的利用, および環境調和, 生態系の修復, 防災・減災 等を図る教育・研究を通して,生物多様性と自然生態 系の持続的利用に貢献できる人材を養成

組織整備の経緯

H18

学院・研究院の分離 4専攻の設置

○2年制M「150名] ○3年制D [50名]

H29

入学定員の変更 国際食資源学院(M)へ定員移行

- ○2年制M [142名]
- ○3年制D「42名]

共生基盤学専攻(M40名, D8名) 生物資源科学専攻(M42名, D14名) 応用生物科学専攻(M18名, D6名)

環境資源学専攻(M42名, D14名)

H31

1専攻3コースに再編 国際食資源学院(D)へ定員移行

- ○2年制M [142名] ○3年制D「36名]
- 農学専攻(M142名, D36名)

牛産フロンティアコース 生命フロンティアコース 環境フロンティアコース 「学位]

修士(農学) 博士(農学)

* 数字は入学定員

北海道大学 農学院 農学専攻(H31.4設置予定)

背景

日本農学の源流が北大農

- 1876年に札幌農学校として北大創基となる
- 植物,昆虫,微生物,動物胚などの研究で世界をリード
- 応用研究(納豆菌など)でも輝かしい成果を挙げる
- 日本一広大な演習林や牧場をはじめ、農学教育研究推進のための強力な実証サイトを有する

北大農の実績(社会ニーズに対応)

- 森林, 農地, 河川などの環境モニタリング, 保全と修 復に基礎と応用で成果(循環型社会白書, H26環境省)
- ロボットとICTによる未来型農業(スマート農業)を創 案・開発しフィールドレベルで実証中(農業競争力強 化プログラム, H28農水省)
- 新規糖転化酵素の発見や機能性食品の開発, 食育活動等で啓発・普及も推進中(日本再興戦略, H25閣議決定)

将来の展望

- ロボット農業の先鋭化により、能率、協調、環境に配慮した新しい農業形態の推進。
- 農地,家畜,森林や沼沢地からの温室効果ガス削減技術の開発・提供で,地球温暖化問題に大きく貢献
- 植物中の新たな遺伝子発現制御機構等の発見をシーズとした極限環境での作物栽培に有用な技術の開発

養成する人材像

- 人類の生存基盤に関する現状と課題はもちろん,解決の方向についても幅 広い視点から議論できる人材
- 先端専門科学の知識・技能を持ち、独創的研究や高度専門的職業を遂行できる人材

学内資源の再配分

- 学院・研究院体制を活用し, 以下の部局から教員118名を 結集
 - ・農学研究院
 - ・北方生物圏フィールド科学センター
 - ·総合博物館
- 連携講座(学外)から教員10名を補強
 - ・農業・食品産業技術総合研究機構北海道農業研究センター
 - · 産業技術総合研究所

特色ある教育

T型人材育成システム=俯瞰力の育成を初期に,専門性の深化を その後に養成

- メンターチームによる多角的指導で視野と質の向上
- 全科目1単位化で留学・フィールド研究への流動性改善 (長期にわたる圃場見学を含む北海道農業生産基盤学特論(2単位科目)を除く)
- 研究と演習単位の重点化により専門性とコミュニケーション カの飛躍的向上 分野横断的視点 独創性

問題発見能力 倫理性問題解決力 国際連携力高度 専門性

)門性 国際

学位

- 修士(農学)
- 博士(農学)

主な就職先

- ●食品
- ●農機
- ●種苗
- ●林業
- ●化学
- ●金融
- ●教育/研究職

ほか

