Infection with an asymptomatic virus in rice results in a delayed drought response.
Functional Plant Biology in press

Profiling SNP and nucleotide diversity to characterize Mekong Delta rice landrace in Southeast Asian populations.
The Plant Genome 12: 190042.

Genetic properties responsible for the transgressive segregation of days to heading in rice.
G3 Genes|Genomes|Genetics 9: 1655-1662.

Innate vulnerability of *Oryza glaberrima* to rice tungro bacilliform virus.
Japan Agricultural Research Quarterly 53, 1-6.

Shaping of a three-dimensional carnivorous trap through modulation of a planar growth mechanism.

Rana B.B., Kamimukai M., Bhattarai M., Koide Y., Murai M. (2019)
Responses of earliness and lateness genes for heading to different photoperiods, and specific response of a gene or a pair of genes to short day length in rice.
Hereditas 156: 36.

Recent progress in overcoming interspecific hybrid sterility in rice.
RIKEN Accelerator Progress Report 52
2018
Anther culture in rice proportionally rescues microspores according to gametophytic gene effect and enhances genetic study of hybrid sterility.
Plant Methods 14, 102.

Ancient endogenous pararetroviruses in Oryza genomes provide Insights into the heterogeneity of viral gene macroevolution.
Genome Biology and Evolution 10, 2686-2696.

Genetic dissection of agronomic traits in introgression lines and improvement of an elite Indica rice variety.
Japan Agricultural Research Quarterly 52, 91-103.

Lineage-specific gene acquisition or loss is involved in interspecific hybrid sterility in rice.

Identification of QTLs for agronomic characteristics in an upland New Rice for Africa (NERICA) variety.
Japan Agricultural Research Quarterly 52, 29-37.

2017
Genomic fossils reveal adaptation of non-autonomous pararetroviruses driven by concerted evolution of noncoding regulatory sequences.
PLOS Pathogens e1006413. doi: 10.1371/journal.ppat.1006413

2016

2015
Cytoplasmic genome diversity in the cultivated apple.
Horticultural Science 42, 47-51.

The rice RCN11/OsXylT,β1,2-xylosyltransferase, is involved in plant development and growth in response to multiple abiotic stresses and ABA sensitivity during seed germination.
Plant Science 236, 75-88.

2014
Rice genomes recorded ancient pararetrovirus activities: virus genealogy and multiple origins of endogenization during rice speciation.
Virology 471-473, 141-152.

Low temperature-responsive changes in the anther transcriptome’s repeat sequences are indicative of stress sensitivity and pollen sterility in rice strains.
Plant Physiology 164, 671-682.

Isolation of a major genetic interaction associated with an extreme phenotype using assorted F2 populations in rice.
Molecular Breeding 33, 997-1003.

Liu, R., Kishima, Y. (2014)
Chapter 12 “Establishment of endogenous pararetroviruses in the rice genome”

Shiono, K., Ando, M., Nishiuchi, S., Takahashi, H., Watanabe, K., Nakamura, M., Matsuo, Y., Yasuno, N., Yamanouchi, U., Fujimoto, M., Takanashi, H.,

2013

2012

The Plant Journal 72, 817-828.

An apple *atp9* pseudogene is maintained at high copy number in ‘Golden Delicious’-type mitochondria but is present substoichiometrically in ‘Delicious’-type mitochondria.

Genome-wide analysis and expression Analysis profiling of half-size ABC protein subgroup G in rice in Response to abiotic stress and phytohormone treatments.

Molecular Genetics and Genomics 287, 819–835.

Rice RCN1/OsABCG5 mutation is associated with the root development in response to nutrient shortage.

Plant Root 6, 28-35.

Complex genetic nature of sex-independent transmission ratio distortion in Asian rice species: the involvement of unlinked modifiers and sex-specific mechanisms.

2011

Temperature controls nuclear import of Tam3 transposase in *Antirrhimum*.

The Plant Journal 65, 146-155.

An intact mitochondrial *cox1* gene and a pseudogene with different genomic configurations are present in apple cultivars ‘Golden Delicious’ and ‘Delicious’: Evolutionary aspects.

Scientia Horticulturae 130, 49-53.

2010 - 2000

貴島祐治、堀田夕夏、石黒聖也、山村和照、塙章、内藤聡、佐野芳雄 (2010) トランスポゾンを指標にしたコシヒカリ品種内の遺伝的差異 *育種学研究* 12, 81-86.

