シロイヌナズナ・シスタチオニン γ－シンターゼ遺伝子の発現制御機構の研究

応用分子生物学講座 分子生物学分野高橋将人

シスタチオニン γ－シンターゼ（CGS）は，高等植物のメチオニン生合成経路において鍵と なる反応を触媒する酵素である。シロイヌナズナにおいて CGS をコードするCGS1 遺伝子 の発現は，メチオニンの代謝産物である S－アデノシルメチオニン（SAM）に応答して負のフィ ードバック制御を受ける。この制御には CGS1 mRNA 第1 エキソン内にコードされるMT01 領域と呼ばれるアミノ酸配列が重要である。また，このアミノ酸配列がシスに作用して，リボソー ムの翻訳伸長停止を引き起こすことがこれまでにわかっている。小麦胚芽抽出液を用いた試験管内翻訳系で SAM 存在下においてリボソームは翻訳を停止する。翻訳が停止する と，その途中まで翻訳された tRNA 付きポリペプチド（部分翻訳産物）が蓄積する。そしてそ の翻訳停止と共役してCGS1 mRNA の分解が起こり，その際，5’末端側を欠いた分解中間体を生じる。

これまでにCGS1 mRNA の分解中間体の 5’末端の位置は，停止したりボソームの極 めて近くであることがプライマー伸長解析によって示された。しかし，小麦胚芽抽出液を用い た試験管内翻訳系において RNase を阻害剤することが知られている poly（G）を添加し て試験管内翻訳を行い，翻訳後の mRNA に対してをプライマー伸長解析を行うと，停止し たリボソームから 20 塩基程度下流の位置に 5’末端をもつ分解中間体が検出される。 また 5’ selection による CGS1 mRNA の 5’ 断片の解析により，同様の位置に 3＇末端を持つ分解中間体が検出された。本研究では，この分解中間体の生成メカニズムの研究を行ったところ，その分解中間体の生成には MT01 領域の下流に存在する強固な二次構造が関与していることが示唆された。

一方で植物体や培養細胞を用いた解析において，mRNA 分解中間体の蓄積は検出さ れるが部分翻訳産物は検出されておらず，生体内で翻訳停止が起こっているという証拠は未だに得られていない。本研究では，生体内で翻訳停止が起こっていることを示すべく，生体内において産生される部分翻訳産物の検出を目指した。そのために，ウイルスベクターを利用した一過的発現系を用いて，in vivoにおいて CGS の部分翻訳産物の検出を試み た。

